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Synopsis 

A strain energy function of the Valanis-Landel type, W = w(X1) + w(&) + w(X,), is shown to be 
applicable to styrene-butadiene rubber (SBR) materials having varying crosslink densities u,. A 
previously obtained functional form of the strain energy derivative w'(X), normalized by dividing 
by uer is confirmed by one of the validity check plots in which a single curve represents the whole 
body of large-deformation test results for all degrees of biaxiality and crosslink density. 

INTRODUCTION 

Recent widespread interest in the strain energy function W for rubberlike 
materials has focused on methods of representing in a satisfactory way the 
complexities of the experimental dependence of the stored energy on various 
strain states. These complexities are illustrated by the well-known deviations 
at  even moderate strain levels of the observed stress-strain behavior from the 
predictions of Gaussian statistical theory. Representations of W as a function 
of the strain invariants and in terms of the extension ratios are both possibilities. 
As examples of the first approach, there are multiple-term series expansion of 
James, Green, and Simpson' in the usual strain invariants (I1,12,13) and a 
four-parameter formula of Blatz, Sharda, and Tschoeg12 with the strain invariant 
being based on a generalized measure of strain. The second approach has been 
taken by Valanis and LandeP in the form of a separable symmetric function of 
the principal extension ratios (XI, X2, A,) and by Ogden4 who also used a series 
of terms based on a generalized strain measure. (Ogden gives a good review of 
the methods proposed prior to his theory.) In general, isotropy and incom- 
pressibility have been assumed to apply to the elastomers under consideration 
in these representations. 

The analytical expressions of references 1,2, and 4 provide reasonable fits to 
experimental data in the examples given by the authors but require four or more 
constants which in several cases involve a computer approach to evaluate. Al- 
though the Valanis-Landel approach by itself does not explicitly give a mathe- 
matical expression for W ,  it does directly provide the complete functional form 
of the strain energy function. It consequently possesses the possibility of pre- 
dicting the behavior of elastomers under various geometric strain states by simple 
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mathematical calculations and readily lends itself to comparison with experi- 
ment. 

These characteristics make it appropriate to consider, in a more comprehensive 
way than previously, the applicability of the Valanis-Landel hypothesis to the 
strain energy function of styrene-butadiene rubber (SBR). Results of extensive 
finite deformation biaxial and uniaxial tests made at  the Jet  Propulsion Labo- 
ratory on a family of SBR materials have been reported previ~usly.~ Stress re- 
laxation tests of thin sheet specimens of five different crosslink densities were 
made in a universal biaxial tester arranged to provide varying amounts of biax- 
iality.6 

In addition to the basic data, reference 5 included an indication of the func- 
tional form at equilibrium of the spatial derivative of the strain energy function, 
determined from strip biaxial (pure shear) data according to the Valanis-Landel 
approach. The necessity of verifying the general validity of the proposed strain 
energy function for all test geometries as well as subsequent refinement of the 
precise level of moduli for the SBR materials, which enters into the test of the 
hypothesis, motivate this further investigation. Since most of the original data 
furnishing the basis of this study appeared only in a foreign-published volume5 
of the proceedings for a conference and perhaps have not received wide distri- 
bution, it may be helpful to review the pertinent experimental aspects and some 
of the prior data analysis forming the background of the present study. 

EXPERIMENTAL ASPECTS 

A full description of the apparatus and experimental procedure is available 
in reference 6 and details of the material composition and specimen preparation 
are given in reference 5. The universal biaxial relaxometer is illustrated in Figure 
1, where it is shown mounted at  an angle a = 16.7 deg to the vertical axis of the 
Instron test machine; this is one of the six possible mounting angles available 
to produce various biaxial concigurations. The trolleys and hooks supporting 
the thin-sheet test specimen along its sides are equipped with individual 
strain-gauged load cells to give the force distribution throughout the sheet 
width. 

The SBR specimens had five different crosslink concentrations, given by 1, 
2,3,4, and 5 parts by weight of the vulcanizing agent, tetramethylthiuram di- 
sulfide (TMTD), per 100 parts of Shell 1502 SBR. (These compositions are 
designated herein either as 1 TMTD, 2 TMTD, etc., or more simply on the figures 
as n = 1, 2, etc.) Uniaxial tensile stress-strain tests on specimens swollen to 
equilibriun in toluene established the elastically effective network chain density 
ve. The values of u, for the SBR materials are listed in Table I. The basic biaxial 
test specimens of SBR were molded sheets approximately 0.13 cm thick and 6.15 
X 6.15 cm square overall, with seven small reinforced holes per side to accom- 
modate the supporting hooks.5 

All the tests were run at room temperature (approximately 26"C), and the bulk 
of the data reported5 was for a relaxation time of 10 min. Complete mechanical 
characterizations were given for the SBR compositions under various biaxial 
strain states and to the highest strain levels attainable before failure occurred 
in one or more of the reinforced support holes. A typical plot showing the 
principal stresses c1, ~ 7 2  (based on unstrained area) as functions of XI, A2 for the 
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TABLE I 
Characteristics of SBR Vulcanizates 

Specimen code Ye7 G(10 min), Ge 9 

(n = parts TMTD) mole/m3 N/m2 X 10-5 N/m2 X 

17.5 2.01 
54 3.45 
90 4.46 

117 5.22 
131 5.70 

0.71 
2.23 
3.65 
4.59 
5.09 

2 TMTD material is given in Figure 2. (Reference 5 provided plots for the 1, 
3, and 5 TMTD compositions.) 

Several long-time relaxation tests performed to establish the variation of stress 
with time indicated that the strain dependence and time dependence of stress 
were separable for the  material^.^ Thus the stress relaxation data for various 
geometries and strain levels covering periods usually up to 10 hr (but, in a few 
cases, to 30 hr) could be used to obtain a reliable estimate of the equilibrium 

Fig. 1. Biaxial stress relaxometer, showing sample configuration, attachments with individual 
proof-ring load cells, and circular target used for strain measurements. 
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EXTENSION RATIO A, 

Fig. 2. Typical dependence for an SBR material of the principal stresses u1 (-), uz (- - -) on the 
principal extension ratio A1 for various X p  values; relaxation time = 10 min, T = 26°C. 

behavior. For this relaxation, use was made of the power law representation 
which has been found to be valid for a variety of  elastomer^.^ Indeed, the ac- 
curacy of the power law extrapolation for this family of SBR materials has been 
verified by a reduced variable analysis8 involving a crosslinking density-time 
shifting procedure that superposes the relaxation data into a single master curve 
covering 16 decades of log time. The equilibrium modulus values obtained by 
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this wide-spectrum relaxation curve agreed within a few percent of those obtained 
by applying the power law to each material test history over a much shorter time 
span. Moreover, the equilibrium moduli for the SBR materials were in generally 
good agreements with those obtained for SBR with similar crosslinking levels 
by creep testsg that established equilibrium compliance levels. 

ANALYSIS BY VALANIS-LANDEL HYPOTHESIS 

With estimates of equilibrium behavior, a representation of the equilibrium 
strain energy function could be determined for this substantially incompressible 
rubber by using the Valanis-Landel hypothesis3 of a separable symmetric 
function given by 

w = w(X1) + w(X2) + W ( h 3 )  (1) 

where XI, X p ,  and A3 are the three principal extension ratios. Following the 
analysis given in reference 3, a functional form of we’(X),  where w’ denotes the 
deriative of w with respect to its argument and the subscript e designates the 
long-time equilibrium condition, was obtained for the five SBR compositions 
using data from strip biaxial (pure shear) tests, in which X p  = 1. This is the only 
test to explicitly determine it,3,5 and w’ was evaluated for tensile strains ( X I  > 
1) using eq. (45) of reference 3, namely, 

where t l  and t 2  are the true stresses in the principal directions in the plane of 
the sheet (t3 = 0 for the thin-sheet specimen). It was found that the we’ values 
could be normalized by dividing by the crosslinking density ue out to the highest 
strains tested. The resulting single master curve of we’lue showed that the 
functional form of W(X) is independent of the network chain concentration. This 
would be expected for small strains from the Gaussian statistical theory, which 
predicts direct proportionality of elastic modulus to u,, but the inadequacy of 
the theory at  larger deformations points to the need of approaches such as the 
one used here to test the applicability of scaling by v,. 

As the emphasis in reference 5 was this correlation of strain energy function 
to u,, no thorough comparison was made there to verify that the strain energy 
function W derived from data corresponding to the strip biaxial (pure shear) 
test condition would also apply to 211 the biaxial strain states as well as uniaxial 
stress conditions. It is imperative here (as in the study of the validity of any 
candidate form of representation of W )  to thus verify that it does, in fact, rep- 
resent the behavior of the material for all loading conditions. Accordingly, it 
is the purpose of this paper to demonstrate that the Valanis-Landel stored energy 
representation is indeed a valid characterization of the family of SBR materi- 
als. 

A t  the same time, an application of the representational method of Blatz, 
Sharda, and Tshoeg12 to SBRlO required additional combined treatment of 
uniaxial tension data (also obtained in the previous experimental program5) and 
uniform biaxial tension results. The latter geometry for an incompressible 
material has the same state of deformation as occurs in simple compression.2 It 
hence furnishes simple compression behavior since t,(X,) = -tt ( A t ) ,  where the 
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Fig. 3. Uniaxial stress-strain results at 10 min of relaxation time for SBR materials of varying 
crosslink density; n denotes the number of parts of TMTD crosslinking agent. Compression data 
derived from uniform biaxial tension tests; T = 26°C. 

subscript c refers to simple compression, the subscript t refers to uniform biaxial 
tension, and A, = Atp2. The use of this "BST" strain energy function* showed 
the need to determine the zero strain modulus with the maximum precision 
possible. This is facilitated by plotting the stress-extension ratio data for both 
tensile and compressive strains to provide a continuous curve through the 
zero-strain point, as shown in Figure 3 for SBR at  10 min of relaxation time. The 
moduli previously r e p ~ r t e d ~ . ~  for these SBR materials represented slopes of 

* Since the SBR data exceeded X = 3 in only one case (cf. Fig. 3), the material parameters in the second 
term of the Blatz-Sharda-Tschoegl equation2 for simple extension could not be adequately estab- 
lished. The one-term equation, i.e., t = (A" - X-"I2)(2G/n), where t is true stress and C is the shear 
modulus (with the values listed in this paper) gave a value of n = 1.32 to very satisfactorily represent 
uniaxial and strip biaxial data a t  a relaxation time of 10 min for the five SBR compositions, indicating 
n to be a material parameter substantially independent of ue. Since n = 2 corresponds to statistical 
theory, the SBR material exhibits a X dependence more complex than predicted by the simple 
theory. 
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stress-strain curves obtained from the tensile side only. As a result, the path 
through X = 1 was not as well defined, and, in effect, the moduli approximated 
the average stress-strain ratio out to perhaps 5% strain. The refined values of 
G (lo), the shear relaxation modulus at  10 min, obtained by use of tangents at  
X = 1 to the curves of Figure 3, are listed in Table I (where incompressibility has 
been used in converting Young’s modulus to G). The corrected values are not 
significantly modified from those previously listed? but the change is discernible, 
being approximately 5% higher for most of the SBR compositions. (These 
modifications in G (10) are small enough that, in conjunction with the fact that 
the time dependence of the relaxation process remains entirely unaltered, none 
of the essential conclusions previously p ~ b l i s h e d ~ , ~  is changed. The equilibrium 
modulus levels given in the references should all be increased slightly, but this 
does not modify the results of superposition or shifting procedures of ref. 8 to 
a degree sufficient to require correcting.) 

Analysis of the biaxial test results (e.g., as in Fig. 2) confirmed these values 
as applicable within a few percent experimental scatter to all the loading 
geometries tested for each material. For completeness, we also list in Table I 
the modified equilibrium shear moduli G ,  corresponding to the corrected G (10) 
values just given. 

VERIFICATION OF THE STRAIN ENERGY FUNCTION 

We now proceed to test the validity of the form of the strain energy function 
W derived from the strip biaxial test by checking the functional form in uniaxial 
and the rest of the biaxial test configurations. If it satisfies tests in allthese 
geometries, then it can be truly said to characterize the material. Inasmuch as 
results and analysis of reference 5 proved separability of strain and €ime, the 
simpler approach will be chosen of using isochronal data at  a relaxation time of 
10 min since the bulk of the stress-strain data was obtained a t  that point in the 
relaxation process. 

To use the isochronal approach, we first need to calculate the w’(h) function 
from strip biaxial data at  10 min of relaxation time. For positive strain (A > l), 
use is made of the XI-direction data and eq. (2). For negative strains (A < l ) ,  use 
is made of strip biaxial data in the thickness, or X3, direction (where t3 = 0 and, 
since A2 = 1, A3 = 1 / X 1 )  and the applicable equation is3 

w’( X3) = -t 2/X3 (3) 
The results for both tension and compression are shown in Figure 4, where the 
function w’(h) is now determined for the 1 TMTD material in the range of values 
0.3 < X < 3, with lesser ranges for the stiffer materials. 

Various empirical relations as functions of A could be used to attempt to fit 
the SBR curves, such as the 2G In X variation proposed by Valanis3 or the 2G[(1 
- (l/X)] form suggested by Dickie and Smith,” with varying regions of approx- 
imate representation. However, our purpose here is rather to prove the validity 
of eq. (1) for SBR by applying the functional forms obtained in Figure 4 to all 
the uniaxial and biaxial tests. To do this, we note that in accordance with the 
relation of stress to the strain function derivative w’ resulting from eq. (l), a 
straight line of unit slope should be given3 by a plot of (t 1 - t2)/2G versus (1/2G) 
[Xlw’(X1) - X2w’(X2)], where w’(X) is given by the curves of Figure 4. Figure 5 



2460 ARENZ 

Fig. 4. Variation of w’(X) with X for the materials of Figure 3 at 10 min of relaxation time; T = 
26°C. 

shows this to be the case within experimental error; of all the results, only the 
uniaxial data a t  high strains appear to deviate in a systematic manner, falling 
a bit below the theoretically predicted line. The reason for this is uncertain, but 
it may stem from the difficulty in cutting uniaxial test samples from the biaxial 
sheet specimens; uniform widths and smooth edges are far less likely than in the 
case of molded specimens. 

A further test of the consistency of the form of W proposed in eq. (1) follows 
from additional analysis of the biaxial tests. The relations between strain 
function and stress become3 

The right-hand sides of eq. (4) can be evaluated from test data so that the values 
of X3w’(X3)/2G are known and can be plotted against X3, as shown in Figure 6. 
If the proposed form of W is valid, then the general biaxial data should lie on the 
curve obtained from the strip biaxial test. That this is the case within experi- 
mental error is evident from Figure 6. 

Particularly powerful verification from Figure 6 lies in the fact that the abscissa 
A3 is not normalized by dividing by the relaxation modulus (as occurs on both 
coordinates of Fig. 5), yet the plot of data shows that essentially a single curve 
(obtained from strip biaxial test results) represents all the data from tests ranging 
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over various strain levels and all the possible degrees of biaxiality for all five SBR 
materials. Thus, the W hypothesis has been shown to be applicable not only 
to each individual material, but also for the whole family of materials as a system 
with a unified strain dependence. The latter feature confirms the previously 
published5 equilibrium wer master curve normalized by dividing by ue, which 
demonstrated that the functional form of W(A) is independent of the network 
chain concentration. These two factors taken together show that u$e of the 
Valanis-Landel W hypothesis is potentially capable of predicting the mechanical 
response of whole families of elastomeric material systems once a single member 
of the family has been characterized. 

CONCLUSIONS 

The generality of applicability and ease of use of the Valanis-Landel functional 
representation of W shown above indicates its value as a method of representing 
and determining W without a strong a priori constraint as to mathematical form. 
In some cases, however, the assumption of a specific mathematical form may offer 
practical advantages; in this sense, the two approaches to the determination of 
W may be viewed as complementary. 
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and t l ,  using data from a variety of biaxial test con- haw'(Xa) calculated from either Xz and t z  or 
ditions, is independent of these variations within experimental error. 
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